調制識別技術在軍、民領域都有著廣泛的應用價值,近年來一直受到人們的關注。隨著更多調制技術的應用,調制識別技術也在不斷向前發展,并應用于各個領域。目前已經存在的數字頻帶傳輸方式有振幅鍵控(ASK)、頻移鍵控(FSK)和相移鍵控(PSK)。并且,數字信息有二進制和多進制之分,因此,數字調制可分為二進制調制和多進制調制。一些特殊的調制方式還有QAM、MSK、GMSK、OFDM。在多進制相移鍵控調制方式中,四進制(即QPSK)調制方式應用最為廣泛。
1 QPSK基本原理
理論上OPSK信號為頻帶無限寬的恒包絡信號,但我們知道,為避免干擾相鄰通道,實際信道總是限帶的,經限帶后的QPSK信號已不能保持恒包絡,由于QPSK的I、Q兩路數據信號的極性轉換時間相同,即碼元的沿是對齊的,其信號的相位變化有0°、±90°、180°4種,其中180°相位變化的信號經限帶后會出現包絡為0的現象,這在實際信道是不希望出現的。OQPSK是針對QPSK的一種改進形式,OQPSK信號則把Q路信號和I路錯開了半個碼元周期(相對I路或Q路的碼元周期Ts而言),因而信號的相位變化在任何一個的整數倍處都可能發生,但兩路信號的相位變化不會同時發生,這樣,輸出的OQPSK信號只有0°、±90°3種相位變化,如圖1所示,信號經限帶后包絡的最大值與最小值之比約為,這就可以預計,它在實際信道中的特性將優于QPSK信號。
2 基帶信號的產生
OQPSK中,同相和正交這兩信道如同兩個獨立的BPSK信道,可以分別進行編碼,因此,在實際應用中,OQPSK信號往往傳輸兩路不同信息。以常用的直擴通信為例,若設偽碼時鐘速率為fs,信息碼速率為fx=fs/N,時鐘速率為fc=fs,則其實現的電路如圖2所示。
由時鐘產生頻率為fc,占空比為50%的時鐘信號,分兩路輸出。一路經同相放大后作為I路偽碼的時鐘,同時,對其進行N次分頻后,作為I路信息碼的時鐘。另一路經反相放大后作為Q路偽碼的時鐘,同時,對其進行N次分頻后,作為Q路信息碼的時鐘。同步控制使信息碼和偽碼處于同步。信息流經串并變換后,分別在I/Q選擇信號的控制下,送入I路FIFO或Q路FIFO單元,FIFO單元以時鐘fx=fc/N的速率向編碼器發送信息數據,信息經編碼后與偽碼異或生成基帶信號。由于I路和Q路信號的時鐘相差半個時鐘周期,因此,I路基帶信號和Q路基帶信號也就錯開了半個時鐘周期。
3 OQPSK調制的實現
由于在基帶信號中已對I/Q路信號進行了的延時處理,因此,OQPSK信號可由基帶信號對載波進行正交調制產生。雖然OQPSK信號通過BPF后包絡起伏小,但其在碼元轉換時,相位仍存在90°的跳變,使信號頻譜高頻滾降慢,頻帶較寬。為了抑制已調信號的帶外輻射,分別對同相和正交支路的數字信號進行編碼,如雙碼元間隔升余弦脈沖,雙碼元間隔三角脈沖等。雙碼元間隔升余弦脈沖可由式(1)表示:
- 1
- 2
- 總2頁
來源:互聯網
http:www.mangadaku.com/news/33717.htm

