欧美午夜精品理论片a级按摩,亚洲视频免费观看,欧美特黄一级,中文字幕一区二区av

我要找:  
您的位置:電源在線首頁(yè)>>行業(yè)資訊>>解決方案>>Calculating IGBT Driver Output for Optimum Performance正文

Calculating IGBT Driver Output for Optimum Performance

By Markus Hermwille, Senior Product Manager, Semikron International, Hudson, N.H

2008/10/28 16:29:28   電源在線網(wǎng)
分享到:

Today, insulated gate bipolar transistors (IGBTs) have reached a broad penetration in power electronics and are used in many applications such as frequency converters, power supplies and electronic drives. IGBTs have high inverse voltages (up to 6.5 kV) and are capable of switching currents up to 3 kA. One key component of every power electronics system — besides the power modules themselves — is the IGBT driver, which forms the vital interface between the power transistor and the controller.

Selection of the driver and the calculation of the optimum driver output power determine the reliability of the converter solution. Insufficient driver power or the wrong driver may result in module and driver malfunction. By following the procedure outlined here, designers can accurately calculate driver output power to achieve optimum performance of switching IGBTs.[1]

Gate Charge Characterizes IGBT Behavior

The switching behavior of an IGBT module is determined mainly by semiconductor capacitances (charges) and the internal and outer resistances. Fig. 1 shows a sketch of the IGBT capacitances where CGE is the gate-emitter capacitance, CCE the collector-emitter capacitance and CGC the gate-collector capacitance or Miller capacitance. The gate charge is characterized by the CGC and CGE input capacitances and is the key parameter when calculating the output-power requirements for an IGBT driver circuit.

The capacitances are almost independent of temperature but strongly voltage dependent, and as such are a function of the collector-emitter voltage( VCE) of the IGBTs. While this dependency is substantially higher at a very low VCE, it is less noticeable at higher voltages.

When the IGBT is turned on, the gate charge characterizes the behavior of the IGBT. Fig. 2 shows the simplified waveforms of the gate-emitter voltage (VGE), the gate current (IG) and the corresponding collector current (IC) as functions of time from turn-on of the IGBT to its saturation.

The turn-on process can be divided into three stages as seen in the IG = f(t) diagram:

  1. Charging of the CGE
  2. Charging of the CGC
  3. Charging of the CGE until full IGBT saturation

The IG charges the input capacitances, and the VGE and VCE voltages that are dependent of the charging process characterize the turn-on and turn-off behavior of the IGBT. During turn-off, the processes described are running in reverse direction and the charge has to be removed from the gate. To calculate the driver output power, the input capacitances may only be applied to a certain extent due to their nonlinearity. A more practical way of determining the driver output power is to use the gate-charge characteristic.

How to Measure and Determine Gate Charge

By means of a simplified test circuit, the gate charge can be measured. Through a constant-current source (QG = I x t), the gate is driven while VGE is measured with an oscilloscope.[2] The determined gate-charge curve (Fig. 3) can be used to calculate the gate charge per pulse needed to drive the IGBT. The total VGE can be calculated by taking the difference of the applied gate turn-on (VG(on)) and turn-off voltage (VG(off)) into account.

The graph in image 3 of the IGBT data sheets shows the gate-charge curve in the positive and negative quadrants. If the gate-charge curve is given in the positive quadrant only, the gate-charge amplitude can be read out by extrapolation. Even in the case where no gate-charge curve is available the gate charge can be determined by means of a less accurate method using the input capacitance CIES = CGE + CGC.[3]

 

Driver Output Power and Gate Current

The individual power of the trigger circuit needed to drive the IGBT can be found as a function of the intended switching frequency and the energy that has to be used to charge and discharge the IGBT. The driver output power (PGD(out)) is the electrical energy (E) times the switching frequency (fSW):
PGD(out) = E x fSW.

Here, E is the product of the gate charge and the difference of the turn-on and turn-off voltages:
E = QG x (VG(on) - VG(off)).

Therefore, driver output power is dependent on gate charge, turn-on and turn-off voltages and the switching frequency:
PGD(out) = QG x (VG(on) - VG(off)) x fSW.

Another key requirement for IGBT driver circuits is that enough current can be supplied to charge and discharge the input capacitances of the IGBT and thus to switch the IGBT on and off. This gate current can be calculated using the equations for IGBT input-capacitance charging (Fig. 4). The gate current calculated is the minimum average output current of the driver output stage per channel:
IG = IGE + IGC = QG x fSW.

The IGBT switching time is controlled by charging and discharging the gate of the IGBT. If the gate peak current is increased, the turn-on and turn-off time will be shorter and the switching losses reduced. This obviously has an impact on other switching parameters such as overvoltage stress, which have to be watched.

The gate-charge currents can be controlled by the turn-on and turn-off gate resistors (RG(on) and RG(off), respectively).[4] The theoretical peak current can be easily calculated IGPEAK=(VG(on) - VG(off))/(RG+RG(int)). Here, the IGBT module's internal gate resistor RG(int) must be taken into account. In practice, stray inductance reduces the peak value below the possible theoretical value. In the data sheet of an IGBT driver, a maximum peak current is given, as are the minimum values for the gate resistors. If both these maximum and minimum ratings are exceeded, the driver output may be harmed as a result.

IGBT Driver Choice

Selecting the suitable IGBT driver requires a few considerations. The maximum average output current of the driver must be higher than the calculated value and the maximum peak gate current of the driver must be equal to or higher than the maximum calculated peak gate current. The output capacitors of the driver must be able to deliver the gate charge needed to charge and discharge the gate of the IGBT.

When selecting a suitable driver, the maximum charge per pulse as listed in the driver data sheet must be duly considered. The selection of a suitable driver, regardless of the application, can be easily accomplished by using the tool DriverSel. DriverSel is a free software tool available at www.semikron.com that, based on the aforementioned characteristics and equations, calculates suitable IGBT drivers on the basis of the IGBT module selected, the number of paralleled modules, the gate resistor, the fSW and VCE. This tool can be used for driver calculation and selection of any brand and IGBT package, as well as to calculate the necessary gate charge and average current.[5]

References

  1. Hermwille, M., "Plug and Play IGBT Driver Cores for Converters," Power Electronics Europe, Issue 2, pp. 10-12, 2006.
  2. IEC 60747-9, Ed.2: Semiconductor Devices – Discrete Devices – Part 9: Insulated-Gate Bipolar Transistors (IGBTs).
  3. Hermwille, M. IGBT Driver Calculation, Application Note AN-7004, SEMIKRON International.
  4. Hermwille, M. "Gate Resistor – Principle and Application," Application Note AN-7003, SEMIKRON International.
  5. SEMIKRON International, www.semikron.com.

For Further Reading

  1. 1. SEMIKRON International, Application Manual Power Modules.
  2. Bhosale, P., Hermwille, M., "Connection of Gate Drivers to IGBT and Controller," Application Note AN-7002, SEMIKRON International.
   免責(zé)聲明:本文僅代表作者個(gè)人觀點(diǎn),與電源在線網(wǎng)無(wú)關(guān)。其原創(chuàng)性以及文中陳述文字和內(nèi)容未經(jīng)本站證實(shí),對(duì)本文以及其中全部或者部分內(nèi)容、文字的真實(shí)性、完整性、及時(shí)性本站不作任何保證或承諾,請(qǐng)讀者僅作參考,并請(qǐng)自行核實(shí)相關(guān)內(nèi)容。
編輯:ronvy
本文鏈接:Calculating IGBT Dr
http:www.mangadaku.com/news/2008-10/20081028162928.html
文章標(biāo)簽: IGBT/Semikron
  投稿熱線 0755-82905460    郵箱  :news@cps800.com
關(guān)于該條新聞資訊信息已有0條留言,我有如下留言:
請(qǐng)您注意:
·遵守中華人民共和國(guó)的各項(xiàng)有關(guān)法律法規(guī)
·承擔(dān)一切因您的行為而導(dǎo)致的法律責(zé)任
·本網(wǎng)留言板管理人員有權(quán)刪除其管轄的留言內(nèi)容
·您在本網(wǎng)的留言內(nèi)容,本網(wǎng)有權(quán)在網(wǎng)站內(nèi)轉(zhuǎn)載或引用
·參與本留言即表明您已經(jīng)閱讀并接受上述條款
用戶名: 密碼: 匿名留言   免費(fèi)注冊(cè)會(huì)員
關(guān)鍵字:
        
按時(shí)間:
關(guān)閉
欧美午夜精品理论片a级按摩,亚洲视频免费观看,欧美特黄一级,中文字幕一区二区av
亚洲国产美国国产综合一区二区| 亚洲精品乱码久久久久久黑人| 欧美亚洲国产bt| 国产传媒欧美日韩成人| 日韩影院免费视频| 亚洲天堂免费在线观看视频| 久久美女高清视频| 日韩欧美一区二区久久婷婷| 欧美日韩免费一区二区三区视频| 99久久久无码国产精品| 国产成人精品一区二| 精品一区二区三区的国产在线播放| 亚洲国产精品久久人人爱蜜臀| 日韩一区在线看| 国产视频在线观看一区二区三区| 轻轻草成人在线| 一区二区高清免费观看影视大全| 精品电影一区二区| 欧美肥胖老妇做爰| 欧美日韩一区三区四区| 成年人午夜久久久| 韩国中文字幕2020精品| 精彩视频一区二区三区| 日本不卡一区二区| 一区二区三区中文字幕| 一区二区三区中文在线观看| 亚洲美女免费在线| 亚洲免费视频中文字幕| 亚洲男女毛片无遮挡| 亚洲免费大片在线观看| 中文字幕日韩精品一区| 亚洲色图第一区| 亚洲精品五月天| 亚洲视频免费在线| 亚洲免费观看高清完整版在线观看 | 日本精品视频一区二区| 成人免费黄色大片| 国产一区二区三区在线观看免费视频 | 亚洲成人av一区二区| 亚洲制服欧美中文字幕中文字幕| 国产欧美日韩麻豆91| 中文乱码免费一区二区| 欧美国产精品久久| 国产日韩欧美一区二区三区综合| 国产欧美日韩视频一区二区| 国产精品每日更新| 国产精品久久国产精麻豆99网站| 欧美tk丨vk视频| 国产亚洲污的网站| 欧美国产国产综合| 伊人色综合久久天天人手人婷| 一区视频在线播放| 亚洲成av人片在www色猫咪| 免费成人美女在线观看.| 国产一区在线观看视频| 国产又黄又大久久| 99精品视频在线观看免费| 色伊人久久综合中文字幕| 欧美日韩色综合| 日韩免费高清视频| 精品成人一区二区三区四区| 国产精品国模大尺度视频| 伊人色综合久久天天人手人婷| 日韩二区三区四区| 国产成人高清在线| 欧洲av一区二区嗯嗯嗯啊| 欧美电影一区二区三区| 日韩欧美一级精品久久| 国产精品每日更新在线播放网址| 亚洲一区欧美一区| 免费观看91视频大全| 国内精品在线播放| 日本道在线观看一区二区| 欧美成人a∨高清免费观看| 日韩理论片在线| 精品亚洲免费视频| 欧美影片第一页| 久久精品欧美日韩精品| 亚洲大片在线观看| 轻轻草成人在线| 91福利区一区二区三区| 欧美va亚洲va香蕉在线| 亚洲色图另类专区| 久久国产精品72免费观看| 色综合久久久久网| 国产欧美日韩麻豆91| 秋霞电影网一区二区| 色综合久久综合中文综合网| 欧美成人三级在线| 亚洲图片欧美综合| 成人午夜激情在线| 欧美大胆人体bbbb| 亚洲mv在线观看| www.欧美亚洲| 国产亚洲精品7777| 色综合久久综合| 欧美电影免费观看完整版| 日韩欧美一区二区视频| 亚洲一区二区av在线| 成人黄色免费短视频| 91精品欧美综合在线观看最新 | 在线精品视频一区二区三四| 国产日韩亚洲欧美综合| 久久电影国产免费久久电影| 欧美男人的天堂一二区| 亚洲精品日韩一| 久久aⅴ国产欧美74aaa| 成人av电影免费在线播放| 精品99一区二区| 美女网站色91| 51精品久久久久久久蜜臀| 亚洲丝袜美腿综合| 99riav一区二区三区| 久久精品在这里| 精品一区二区日韩| 日韩精品最新网址| 日韩专区在线视频| 在线不卡a资源高清| 亚洲福利一二三区| 欧美三级电影精品| 婷婷久久综合九色综合伊人色| 一本高清dvd不卡在线观看| 欧美亚洲综合网| 国产精品视频免费| 国产ts人妖一区二区| 国产午夜一区二区三区| 国产成人综合在线观看| 久久精品一区蜜桃臀影院| 国产mv日韩mv欧美| 亚洲欧洲性图库| 一本大道久久a久久精二百| 自拍av一区二区三区| 色一情一伦一子一伦一区| 亚洲天堂a在线| av在线这里只有精品| 国产午夜亚洲精品不卡| 精品一区二区三区在线播放视频| 久久这里只有精品首页| 丰满亚洲少妇av| 国产精品入口麻豆九色| 一本到一区二区三区| 午夜精品aaa| 欧美日韩一区二区欧美激情| 亚洲午夜久久久久中文字幕久| 欧美日韩一二三区| 日本欧美肥老太交大片| 欧美精品一区二区三区高清aⅴ| 九九九久久久精品| 日韩美女在线视频| 国产精品综合视频| 国产欧美一区二区精品性色| 99精品国产99久久久久久白柏| 亚洲尤物在线视频观看| 日韩一级片在线观看| 国产精品亚洲午夜一区二区三区| 中文字幕日韩av资源站| 欧美日韩视频在线第一区| 麻豆一区二区99久久久久| 国产欧美日韩卡一| 国产成人亚洲综合a∨婷婷| 欧美国产激情二区三区| 欧美在线制服丝袜| 极品美女销魂一区二区三区 | 国产高清不卡一区二区| 欧美在线你懂的| 久久99精品国产91久久来源| 亚洲欧美电影一区二区| 制服视频三区第一页精品| 国产精品99久久久久| 午夜精品成人在线视频| 中文成人av在线| 精品久久久久久最新网址| 97精品视频在线观看自产线路二| 美女一区二区三区在线观看| 一区二区视频在线| 久久久天堂av| 日韩一区二区三区四区五区六区| 色综合夜色一区| 国产精品一卡二| 婷婷综合久久一区二区三区| 亚洲同性gay激情无套| 久久美女艺术照精彩视频福利播放 | 精品无码三级在线观看视频| 亚洲国产毛片aaaaa无费看| 中文字幕一区二区三区四区| 精品国产精品一区二区夜夜嗨| 欧美三级韩国三级日本三斤| 成人动漫一区二区在线| 韩日av一区二区| 美女视频免费一区| 日本午夜精品一区二区三区电影| 亚洲一区二区三区免费视频| 亚洲欧美日韩久久精品| 国产精品国产三级国产| 国产欧美日本一区二区三区| 久久影院视频免费| 天堂va蜜桃一区二区三区| 亚洲一区二区av在线| 亚洲国产日韩av| 亚洲乱码国产乱码精品精可以看|